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It is well known that a simple equation of the 
form 

[d = K X  

is of general applicability in describing the relation- 
ship between intrinsic viscosity and molecular 
weight for a wide range of polymeric substances. 
The values for the constants K ,  and a have been 
obtained for a number of polymer-solvent pairs, 
and eq. (1) has been used widely for the determina- 
tion of molecular weights of high polymers. This 
relation is empirical in origin and its theoretical 
basis remains an unsettled question. With a 
few exceptions, however, the theoretical expres- 
sions obtained by Flory and Fox' can be approxi- 
mated quite closely by this simple equation. 

The purpose of this note lies in demonstrating 
that there exists a specific relationship between K ,  
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Fig. 1. Relationships between K ,  and a obtained for 

carefully fractionated samples of various polymers: (A) 
polybutadiene, ( 0 )  polyvinyl chloride, (a)) polyvinyl 
alcohol, (V) cellulose nitrate, (El) polyvinyl pyrrolidone, 
(0 )  polystyrene, (x)  polymethyl methacrylate. 

and a, and that this relationship can be derived 
theoretically. The result furnishes not only some 
suggestions for the improvement of recent theories 
on intrinsic viscosity, but also useful information 
concerning molecular heterogeneity and chain 
configurations of polymer molecules. 

When the values of K,  for a series of well- 
fractionated polymer homologs in various solvents 
(mixed or pure are plotted against the 
corresponding values of a, relationships such as 
those shown in Figure 1 are obtained. Similar 
relationships are found for the solutions in a single 
solvent of a series of fractionated polymer samples 
(for instance, polyvinyl chlorides or polybuta- 
dieneg) polymerized under different conditions. 
It is of interest that plots of K ,  vs. a for various 
polymeric substances all fall onto either of two 
typical curves, one for flexible, noncrystallizable 
polymers and the other for semiflexible, crystalline 
polymers. This uniformity, however, fails for 
polymer samples from a different source or for data 
obtained by different authors. 

An attempt will be made in the following pages 
to put these relationships between K ,  and a on a 
theoretical basis. 

Flory and Fox' showed that the intrinsic viscosity 
should depend upon molecular weight in accordance 
with the formulas 

[7J] = KM"'a3 (2 ) 

(3) 

and 

cy" - ff8 = 2C*((P' - K 1 ) M " Z  

The quantities occurring in these equations are 
defined in their paper.' Combining eqs. (1) and 
(2), we obtain 

a3 = ( K , / K ) M ( - ' / * ) = A M ~ ~  (4) 

We make use of eqs. (3) and (4) to obtain 
232 
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1 + [ 2 C M ( ( p I  - K J M ( ~ / ' - ~ ) / A ]  = (AMB)'l3 (5) 

Differentiation of the logarithms of both sides of 
eq. (5) with respect to In M leads to 

P = 1/[(10/3) + (4/3)(A/z)l (6) 

wherex = 2CM(cp1 - K~)M('/ ' -@).  
It is easily seen from eq. (6) that the theoretical 

expression of Flory and Fox can be reduced by 
approximation to eq. (1) (the experimental 
relationship) only when /3 < 0.3. 

By substitution of this expression for x in eq. (5 ) ,  
we obtain 

1 + x / A  = A2/3M2B/3 (54 
In the range 0 < /3 < 0.3, Mz@l3 varies only slightly 
with M and can be approximated by 

M28/3 = M02@/3 [1 + 2 / 3 B m / M  + 
. . .] S M028/3 (7) 

where Mo is a type of average molecular weight over 
the range of concern and AM = M - Mo. Making 
use of eqs. (5a), (6), and (7), we obtain 

A213 = (Km/K)2'3 = 

[(4/J ( l / P  - 1 ° / 3 )  -' + 11/M:8/3 (8) 

Equation (8) is nothing but the theoretical rela- 
tionship between K,  and a (or S). In arriving at 
this result only one approximation has been made, 
that in eq. (7). It must be noted, however, that 
strictly speaking, eq. ( 1 )  is only an approximate 
form and should be sufficiently accurate only in a 
narrow range of molecular weights, insofar as the 
theory of Flory and Fox is valid (since M28/3 
in eq. (5a) depends, although slightly, upon molec- 
ular weight). The relationship between K,,, and a 
is affected by K and Mo (i.e., the molecular weight 
range covered by the intrinsic viscosity-molecular 
weight studies). Since K and MO do not depend 
on the type of solvent, however, it is reasonable 
that such a relationship as was shown in Figure 1 
has been obtained for a polymer in several solvents. 

In order to confirm quantitatively the validity of 
eq. (€9, we have plotted against /3 the left-hand 
side of the equation (9) : 

- In Km + In 

[ ( 4 / 3 w P  - I0/3)-l + 11 = 

B In Mo - In K (9) 
which is easily obtained from eq. (8). Typical 
results are shown in Figure 2 for polymethyl 

methacrylate* and polystyrene. The indicated 
linear relationships show very good agreement be- 
tween theory (i.e., eq. (8)) and experiment. Fur- 
thermore, K and M o  determined by the intercept 
and the slope of the plots, respectively, are of 
reasonable orders of magnitude. 

The values of Mo thus determined is nearly equal 
to the arithmetical average of the upper and lower 
limits of the molecular weight range covered; for 
instance, in the case of polymethyl methacrylate, 
we obtained Mo = 2.51 x 106 from the above 
graphical method and Mo = 2.2 X lo6 as the 
average of the limits of the molecular weights 
4 X lo5 and 4 X lo6. Subsequently, therefore, we 
employed the latter convenient method of deter- 
mining Mo, although inevitably some error was 
introduced. Once K ,  and a have been obtained for 
a given polymer-solvent pair, the one unknown 
constant K can be computed by use of eq. (8). 

The above discussion, however, concerns only 
molecularly homogeneous polymer, as does the 
theory of Flory and Fox' on which the above treat- 
ment has been based. For heterogeneous polymers 
eq. (1) must be rewritten 

[v ]  = * K , P  (14 

where * is a numerical constant denoting the mo- 
lecular heterogeneity and il? is the average molecular 
weight (the type of average depending on the 
method of measurement) of the fractionated or 
unfractionated, heterogeneous polymer. It must 
be noticed that in writing [T] = KmBc,  one usually 
introduces the molecular heterogeneity into the 
viscosity-average molecular weight, an. Strictly 
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Fig. 2. Examination of the validity of eq. (8): typical plots 

of the lefbhand side of eq. (9) against 8. 
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TABLE I 
Calculation of K* by Eq. (8) from the Values in the Literature of K, and a 

for Various Polymer-Solvent Pairs 

Molecular 
System weight 

Temp., X Me X Re- K, X K* X K X Refer- 
Polymer Solvent "C. range 10-3 marks" lo* a 104 104 ence 

Polystyrene 

Polyisobutylene 

Polymethyl meth- 
acrylate 

Polybutadieneb 
(5OoC., 27.1%) 
(50C., 64.5%) 

(5'C., 30.5%) 
(-2O"C., 65%) 

Benzene 

Diisobutylene 
Carbon tetra- 

chloride 
Cyclohexane 
Benzene 

Methyl ethyl 

Acetone 
ketone 

Toluene 
Toluene 

25 
25 
30 
20 
30 

30 
25 
30 
40 
25 
25 
25 
25 
25 

25.9 
25.9 

25.9 
25.9 

5-45 
5-45 

10-600 
6-1300 
6-1300 

6-3200 
1-1300 
1-1300 
1-1300 

770-1440 
400-4000 
770-1440 
400-4000 
400-4OOo 

30-120 
30-1000 

30-1000 
30-1000 

25 
25 

305 
650 
650 

1600 
650 
650 
650 

1105 
2200 
1105 
2200 
2200 

75 
515 

515 
515 

4.40 
2.92 
1.74 
3.59 
4.52 

2.77 
8 . 3  
6 .1  
4 . 3  
0.68 
0.71 
0.75 
0.96 
0.71 

6 .5  
26.4 

10.6 
10.6 

0.65 
0.65 
0.71 
0.64 
0.64 

0.69 
0.53 
0.56 
0.60 
0.72 
0.72 
0.70 
0.69 
0.73 

0.67 
0.55 

0.64 
0.63 

12.13 
8.05 
9.19 

14.92 
18.78 

15.35 
11.62 
11.81 
12.48 
4.77 
5.80 
5.02 
7.00 
5.80 

23.31 
45.48 

42.61 
36.44 

10 
8.05 10 

(3OOC.) 11 
12 
13 

10.7 14 
(24°C.) 15 

15 
15 
16 
2 

16 
6 . 5  2 

(30°C.) 2 

9 
9 

(for 9 
gutta- 9 
percha) 

23.2 

* C indicates cryoscopic measurement, 0 osmometry, L light scattering, u unfractionated polymer, and f fractionated 
polymer. 

The figures in parentheses indicate the temperature of polymerization and conversion, respectively. 

speaking, the nature of ?P depends on the exponent 
a of eq. (la). However, it is not sensitive to the 
value of a over the range of concern. It is thus con- 
cluded that eq. (8) is valid also for heterogeneous 
polymers if K is simply replaced by K*(= XPK). 

In Table I values for K* are computed from 
Km and a obtained for several polymer-solvent 
pairslO-ls for which the values of Flory's parameter 
K are known. l7 Table I provides us with important 
information on the exact meaning of the arbitrary 
constants K,  and a and their variation with molec- 
ular heterogeneity, structure, and other factors. 

At  first sight, it is seen that the values thus ob- 
tained for K* do not fluctuate greatly for a 
polymeric substance in spite of remarkable varia- 
tion in the corresponding Km-values; this agrees 
with the behavior predicted on the basis of the 
above treatment. More close inspection of these 
values, however, indicates that an "average" 
molecular heterogeneity of a series of fractionated 
(or unfractionated) polymer homologs is reflected 
in these values of K*; for instance, the value 
found for K* is obviously greater for the unfrac- 

tionated samples than for the fractionated samples 
of polystyrene.lO When the osmotic or cryoscopic 
method is used for absolute molecular weight deter- 
mination, K* is usually greater than Flory's 
parameter K ,  which was obtained for carefully 
fractionated samples. On the other hand, when the 
light-scattering method is used (cf. polymethyl 
methacrylate in Table I), the value of K* ap- 
proaches that obtained for K and often becomes 
smaller than the latter. This is indicative of the 
well-known fact that the light-scattering method 
gives the weight-average molecular weight, which 
is closer than the other average weights to the so- 
called viscosity-average molecular weight, and 
hence the efficiency of fractionation is less impor- 
tant. 

In view of this effect of molecular heterogeneity, 
it is rather natural that no consistent relationship 
was found between K ,  and a when comparisons 
were made between values for polymer from 
different sources, or between values given in several 
literature reports on the same polymer-solvent 
combination. However, this fact can be utilized 
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to obtain a measure of the molecular heterogeneity 
of the samples used. Fairly good agreement is 
obtained between the K* values computed from the 
light-scattering data obtained by different au- 
thors2.16 for different samples of polymethyl meth- 
acrylate. It may be said, therefore, that the dis- 
parities in K* for polyisobutylene samples from 
different sources (molecular weights of which were 
determined by the osmotic method) are due mainly 
to differences in molecular heterogeneity (see 
Table I). 

The structural features of polymer chains should 
be reflected in K and, consequently, in K* obtained 
in the manner described above. An attempt was 
made to test the dependence of K* upon tempera- 
ture for polyisobutylene solutions in benzene, l5 

but an unreasonable result (positive temperature 
coefficient) was obtained (see Table I) , probably 
owing to the fact that the small temperature de- 
pendence was hidden within various errors in- 
evitably introduced. I t  is evident, however, that 
the values of K* obtained for carefully fractionated 
samples are nearly equal to K; and thus they pro- 
vide information concerning the inherent struc- 
tural features of the polymer chain, such as flexi- 
bility, branching, and so forth. 

With this in view, the results on polybutadiene 
for different polymerization temperatures and con- 
versions have been given in Table I. The value 
obtained for K* certainly varies with the poly- 
merization conditions, but this variation does not 
necessarily imply different degrees of branching. 
A large amount of branching in the polymers 
prepared at  higher temperatures and conversions 
would cause a reduction in K* (defined by the 
ratio gat', which is given theoretically by Zimm 
and Stockmayer18). However, the opposite is 
observed in this case, at  least with respect to the 
dependency of K* upon the temperature of poly- 
merization. It is not certain, therefore, that 
branching is responsible for the change in K*, and 
two other factors must be considered. One is the 
variation in stereochemical structure (i.e., the 
proportions of 1,2 addition and cis-trans-1,4 con- 
figurations). However, according to Markovitz, l9 
the changes in molecular coil dimensions (and, 
consequently, in K*) resulting from these differ- 
ences in structure are small and nearly compensate 
one another. Another factor is the variation in 
molecular heterogeneity averaged over a series of 
fractionated samples, which is influenced, more or 
less, by the heterogeneity of the original samples. 
In the present case, this might be partly responsible 

for the change in K*. Further quantitative dis- 
cussion of the branching of polymer chains would 
be possible if examples were available in which the 
above-mentioned complication had been avoided. 
Unfortunately, we have no such examples. 

We will now discuss features of interest in Figure 1. 
A few factors can be considered as possible expla- 
nations of the fact that the K,-a curves for various 
polymeric substances are divided into two groups. 
From eq. (8) it is seen that different curves should 
be obtained for different values of either K or Mo. 
Indeed, K ,  increases with MO when K is constant 
(see Table I), but it does not vary so much that the 
behavior shown in Figure 1 can be accounted for 
by this factor. The behavior in question must 
therefore be attributed to changes in K ,  unless the 
theory of Flory and Fox suffers any deficiency. It 
seems reasonable that the great disparity between 
K for flexible, noncrystallizable polymers and K for 
semiflexible, crystalline polymers (as exemplified 
in Table I by the remarkable differences in K* 
for polybutadiene and K* for the other more flexible 
polymers), is responsible for the existence of two 
distinct groups of curves. The small disparities 
between the curves in a group may be attributable 
to small changes in K ,  differences in Mot and differ- 
ences in molecular heterogeneity, unavoidable even 
in well-fractionated samples. 

Another important factor may help to explain 
these experimental relationships. It is known 
that the Flory-Fox theory requires some amend- 
ment if it is to be applied to polymers with very 
poor chain flexibility, such as cellulose deriva- 
t i v e ~ . ~ ~ - ~ ~  One of the requirements of their theory 
is that the internal hydrodynamic resistance must 
be sufficiently large that the universal constant 
9 approximates its asymptotic (maximum) value'7; 
however, this condition is not fulfilled for chains of 
poor flexibility, owing to the high degree of exten- 
sion of the chains. This restriction in their theory 
just corresponds to the inapplicability of the pres- 
ent treatment to cases in which p > 0.3. 

Kirkwood and Riseman2* and Debye and 
B ~ e c h e ~ ~  independently developed quantitative 
treatments of intrinsic viscosities of polymer solu- 
tions. Although their theoretical viewpoints differ 
somewhat, it may be concluded from both theories 
that the change of [v] with molecular weight is 
closely associated with the corresponding change in 
hydrodynamic shielding capacity of elements in 
the interior of the polymer molecule. As was 
pointed out by Flory,17 the effect of this factor 
vanishes when the total internal resistance to flow is 
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sufficiently great, as is usually the case. When the 
situation approaches the partially free-draining 
case, however, this effect might have to be taken 
into account, in addition to the volume effect. 

In fact, it is seen from Figure 1 that the plots for 
the extended chains (the upper curve) extends to 
the region 0.8 < a < 1. Therefore, an alternative 
explanation along the line of the Kirkwood- 
Riseman or Debye-Bueche theories for the existence 
of two distinguishable groups of curves might be 
possible. Such an explanation, however, seems less 
convincing to us than that mentioned previously, 
because the result obtained from the Flory-Fox 
theory would not be altered seriously by this factor. 

It must be remarked that the above relationship 
between K m  and a is also applicable to the solution 
in a common solvent of a series of polymer samples 
polymerized under different conditions as was 
shown in Figure 1 for polybutadiene and polyvinyl 
chloride. This fact can also be interpreted in 
terms of the theory of Flory and Fox:’ since CM 
in eq. (3) contains the term r?/M (where 2 is the 
unperturbed value of the mean-square end-to-end 
length of the polymer chain), the inherent struc- 
tural features of the chains affect, although in- 
directly, the long-range, volume effect, causing the 
differences in the exponent a for these polymer 
samples even in a common solvent. Branching or 
some other factors may be considered to produce 
such differences. However, this line of argument 
seems somewhat inadequate to account for the ob- 
served great changes in a. The effect of the factor 
deduced previously from the Kirkwood-Riseman 
and Debye-Bueche theories might also have to be 
taken into account. Further experimental and 
theoretical studies need to be supplemented before 
a conclusion is drawn on these points. 

Finally, we wish to stress the usefulness of the 
results of our investigation : 

( 1 )  When the empirical relation [?I = K,M, 
is obtained for a series of carefully fractionated 
polymer homologs, the Flory parameter K can be 
computed from the values for Km and a; from K ,  
quantitative information concerning the inherent 
structural features of the polymer chain, such as 
flexibility, the degree of branching, etc., can be 
obtained. 

(2) The value of K* obtained in the manner 
described above provides a measure of the molecular 
heterogeneity inevitably present in a well-fraction- 
ated sample. Although this value gives only a 
measure of average heterogeneity over the series of 
polymer homologs used, its use furnishes a con- 

venient means of examining newly obtained 
171 -M data or of choosing the most reliable relation- 
ship for a given polymer-solvent combination from 
among those obtained by various authors. These 
relationships differ among themselves, in some 
cases, depending upon the efficiency of fractionation 
and other factors. 

Once K ,  and a (and hence K )  have been 
established for a given, well-fractionated polymer 
series in a given solvent, K ,  and a can be easily 
computed for many other solvents from measure- 
ments of [?]. If K is known for a given polymer, 
we can evaluate Km and a from measurements of 
[?] and M for a single (carefully fractionated) sam- 
ple. Only one sample need be used, and thus re- 
course to the usual more laborious methods is 
unnecessary; we have, so to speak, a “one-point 
method” of obtaining an intrinsic viscosity-molecu- 
lar weight relationship. This method is also ap- 
plicable to unfractionated polymers; moreover, the 
molecular heterogeneity of the samples can be esti- 
mated. An application of the method to poly- 
acrylonitrile solutions will be reported on in the 
near future. 

It is suggested that for highly extended 
chains the theory of Flory and Fox may have to 
be modified to some extent, perhaps by combina- 
tion with the Kirkwood-Riseman theory. This 
view is supported by the facts that in the case of 
greatly extended polymer chains, the intrinsic 
viscosity increases with M raised to a power a little 
greater than unity, and that for polymeric sub- 
stances of molecular weight less than about 30,000 
the exponent a often exceeds 0.8. 

(3) 

(4) 
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Synopsis 
From an examination of experimental data on a number of 

series of well-fractionated polymer homologs in various sol- 
vents, interesting correlations were found between the 
constants K, and a in the Mark-Houwink equation often 
used in describing the relationship between intrinsic viscos- 
ity and molecular weight. For a given series of polymer 
homologs in different solvents, K, regularly decreases with 
increasing a; moreover, in the K,-a curves, plots for various 
polymeric substances all conform to one of two typical 
curves, the one being for flexible, noncrystallizable polymers 
and the other for semiflexible, crystalline polymers. In this 
paper an attempt has been made to put these experimental 
relationships on a theoretical basis. Combination of the 
theoretical expressions obtained by Flory and Fox with the 
Mark-Houwink equation yields the equation 

(Km/K)2’3 = [(4/8)(l/j3 - lo/3)-I + 11/M2@l3 

where f l  = a - 1/2, K is a constant characteristic of the poly- 
mer chain, and MO is the arithmetical average of the upper 
and lower limits of the molecular weight range covered. The 
experimental relations between K ,  and a mentioned above 
can be quite adequately accounted for by this equation. 
Although eq. (1) was originally derived for molecularly 
homogeneous polymers, it has been shown to be valid also 
for molecularly heterogeneous polymers if K is replaced by 
K * ,  which reflects the molecular heterogeneity of a series of 
fractionated (or unfractionated) polymer homologs. Al- 
though this value gives only an average heterogeneity over a 
series of the polymer homologs used and depends upon the 
method of molecular weight determination, its use furnishes 
a convenient method either for the examination of newly ob- 

tained [ q ]  vs. M data or for the choice of the most reliable 
relationship among those obtained by various authors for a 
given polymer-solvent combination. When the theory of 
Flory and Fox is applicable and K is known for a given 
polymer, the Houwink constants can be easily computed 
through use of eq. ( 1 )  from the measurements of [q J and M 
for only one (carefully fractionated) sample, without re- 
course to more laborious methods usually used. This is, 
so to speak, a “one-point method” of obtaining the intrinsic 
viscosity-molecular weight-relationship. 

R6swn6 
L’examen des donnkes expbrimentales sur dess kries de 

polymhres homologues bien fractionn6s dans diff Brents 
solvants montre des corr6lations int6ressantes entre les 
constantes K,,, et a de l’kquation de Mark-Houwink souvent 
utilis6e pour la relation entre la viscosit6 intrinshque et le 
poids molkculaire. Pour une skrie donnk de polymbres 
homologues dans diff6rents solvants, K ,  diminue r6gulihre- 
ment avec l’accroissement de a, et de plus, dans un dia- 
gramme K ,  vs. a, tous les points pour diffbrentes substances 
polym6riques tombent sur deux courbes typiques, l’une pour 
les polymbres flexibles, non cristallisables et  I’autre pour les 
polymbres semiflexibles, cristallins. Dans cet article un 
essai a 6t6 fait pour expliquer ces relations expbrimentales 
sur une base th6orique. En combinant les expressions th6o- 
riques obtenues par Flory et Fox avec 1’6quation Mark- 
Houwink, on obtient: 

( K m / K ) 2 / 3  = [(4/a)(1/8 - 1°/3)-1 + ll/M02@/3 (1) 

o i i @ = a -  I/*, K est une constante caractbristique d’une 
chaine polym6rique et  Mo est la moyenne arithm6tique entre 
les limites supkrieures et infbrieures du domaine de poids 
mol6culaire envisag6. Les relations expbrimentales entre 
K ,  et a mentionnks ci-dessus peuvent dtre suffisamment 
expliqu6es par cette bquation. On montre que bien qu’elle 
ait 6th d6riv6e originairement pour les polymhres homogbnes, 
eq. (1) conserve sa validit6 pour les polymbres hbtkroghnes 
si K est remplac6 par K*,  et l’h6terog6n6itk mol6culaire 
d’une sene de polymhres homologues fractionnbs (ou non 
fractionnks) se reflhte elle-mdme dans la valeur de K*. Bien 
que cette valeur donne seulement un hkt6rog6n6it6 moyenne 
pour une s6rie de polymbres homologue et  bien que cette 
valeur dhpende de la m6thode utilis6e pour la d6termination 
du poids mol6culaire, son emploi fournit une m6thode con- 
venable pour I’examen des donn6es nouvellement obtenues 
de [ T ]  vs. M ou bien pour le choix de la relation la plus ac- 
ceptable pour une combinaison polymhre-solvant donn6e & 
partir de celles obtenues par diff6rents auteurs aui parfois 
diffbrent l’une de l’autre. Lorsque la thbrie de Flory et 
Fox est applicable et lorsque K est connue pour un poly- 
mbre donn6, les constantes de Houwink peuvent &re facile- 
ment calcul6es au moyen de eq. ( 1 )  & partir des mesures de 
[TI et de M pour un seul 6chantillon (soigneusement frac- 
tionn6) sans avoir recours aux m6thodes plus laborieuses 
utilis6es habituellement. C’est pour ainsi dire la “one 
point method” pour obtenir la relation viscosit6 intrinsbque- 
poids molbculaire. 

Zusammen fassung 
Bei der Priifung der experimentellen Daten einer Reihe 

von gut fraktionierten Polymerhomologen in verschiedenen 
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Liisungsmitteln wurden interessante Zusammenhiinge 
zwischen den Konstanten K ,  und a der zur Beschreibung 
von Viskositatszahl-Molekulargewichts-abhangigkeiten oft 
benutzten Mark-Houwink-Gleichung gefunden. Fur eine 
gegebene Reihe von Polymerhomologen nimmt K ,  in 
verschiedenen Iijsungsmitteln mit steigendem a in regel- 
massiger Weise ab und darubsr hinaus fallen bei den K ,  vs. 
a-Kurven alle Diagramme fur verschiedenartige polymere 
Substanzen auf zwei typischc Kurvenzuge, namlich einen 
fur flexible nichtkristallisierbare Polymere und den anderen 
fur semiflexible, kristalliie Polymere. In der vorliegenden 
Mitteilung wird der Versuch unternommen die empirischen 
Besiehungen auf eine theoretische Grundlage zu stellen. 
Durch Kombination der theoretischen Ausdrucke von Flory 
und Fox mit der Mark-Houwink-Gleichung erhalt man : 

( K , / K ) ~ / ~  = [ ( 4 / m / o  - 10/~)-1 + 1 1 / ~ P / ~  (1) 

wo p = a - K eine fur eine bestimmte Polymerkette 
charakteristische Konstante und Mo das arithmetische 
Mittel zwischen der oberen und unteren Grense des betref- 
fenden Molekulargewichtsbereiches ist. Die oben erwahnten 
empirischen Beziehungen zwischen K ,  und a konnen be- 
friedigend durch diese Gleichung wiedergegeben werden. 
Es wurde geseigt, dass G1. (I), obgleich sie ursprunglich fur 

molekular homogene Polymere abgeleitet wurde, ihre 
Gultigkeit auch fur molekular heterogene Polymere beibe- 
halt, wenn nur K durch K* ersetzt wird, in dessen Wert 
sich die molekulare Heterogenitat einer Reihe von fraktion- 
ierten (oder nicht fraktionierten) Polymeren wiederspiegelt. 
Obwohl dieser Wert nur eine mittlere Heterogenitat fur die 
Reihe der untersuchten Polymerhomologen liefert und von 
der zur Molekulargewichtsbestimmung benutzten Methode 
abhangt, liefert seine Benutsung doch eine bequeme Me- 
thode, sowohl fur die tfberprufung neu erhaltener [ T I ]  vs. M -  
Daten, als auch fur die Auswahl der verlasslichsten Bezie- 
hung fur ein gegebenes Polymer-Usungsmittelsystem aua 
den von verschiedenen Autoren erhaltenen Beziehungen, 
die manchmal von einander abweichen. Falls die Theorie 
von Flory und Fox angewendet werden kann und K fur ein 
bestimmtes Polymeres bekannt ist konnen die Houwink- 
Konstanten leicht mittels G1. (1) aus Messungen von [ v ]  
und M an einer einsigen (sorgfaltig fraktionierten) Probe, 
ohne Zuhilfenahme der gewohnlich benutzten, einen gros- 
seren Aufwand erfordernden Methoden, berechnet werden. 
Man kann diese Methode als die “Einpunktmethode” zur 
Ermittlung der Viskositatszahl-Molekulargewichtsbeziehung 
bezeichnen. 
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